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Abstract
Acetylcholinesterase inhibition was modeled for a set of 136 tacrine analogues using Bayesian-regularized Genetic Neural
Networks (BRGNNs). In the BRGNN approach the Bayesian-regularization avoids overtraining/overfitting and the genetic
algorithm (GA) allows exploring an ample pool of 3D-descriptors. The predictive capacity of our selected model was
evaluated by averaging multiple validation sets generated as members of diverse-training set neural network ensembles
(NNEs). The ensemble averaging provides reliable statistics. When 40 members are assembled, the NNE provides a reliable
measure of training and test set R values of 0.921 and 0.851 respectively. In other respects, the ability of the nonlinear selected
GA space for differentiating the data was evidenced when the total data set was well distributed in a Kohonen Self-Organizing
Map (SOM). The location of the inhibitors in the map facilitates the analysis of the connection between compounds and
serves as a useful tool for qualitative predictions.

Keywords: Bayesian regularized-Genetic Neural Networks, neural network ensemble, self-organizing maps, acetylcholin-
esterase inhibitors, QSAR

Introduction

Tacrine (9-amino-1,2,3,4-tetrahydroacridine) was the

first drug for the symptomatic treatment of Alzheimer’s

disease (AD) [1]. The rationale for its use is related to

the elevation of the acetylcholine (ACh) levels by

reversible inhibition of acetylcholinesterase (AChE),

which can compensate for the cholinergic deficit

associated to the brain lesions present in AD. However,

there are several deficiencies of tacrine as a drug which

are related to liver toxicity and peripheral cholinomi-

metic actions [2]. In order to reduce these undesirable

side effects, many analogues of tacrine have been

reported [3–11], most of these are structurally closely

related to the parent compound and retain the

aminopyridine or aminoquinoline moiety (Figure 1).

Computational-based rational design of drugs has

increased in the last decade. Most of those approaches

are focused on quantitative structure–activity

relationship (QSAR) studies, using different kinds of

molecular descriptors for encoding chemical infor-

mation [12]. After computing a set of descriptors,

multivariate linear or/and nonlinear relationships are

established between a reduced subset of variables and

the inhibitory activity, leading to a mathematical

model. AChE inhibitors have been approached by

many kinds of computational strategies. A serious

source of information about this topic is offered by

Dimoglo et al. [13]. In this paper, the authors made

a comprehensive review of the ‘state of the art’

concerning AChE inhibition modeling.

Artificial neural networks (ANNs) arose from

attempts to model the functioning of the human

brain [14]. They usually overcome methods limited to

linear regression models such as multiple linear
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analysis or partial least square [15–18]. Contrary to

these methods, ANNs can be used to model complex

nonlinear relationships. Since biological phenomena

are complex by nature, this ability has promoted the

employment of ANNs in drug design studies. In the

current study we model the AChE inhibitory activity

of a set of tacrine analogues [3–11]. The data set

includes 136 compounds with the biological activity

reported as IC50 values. The characteristics of the

inhibitors were represented by relevant 3D descriptors

extracted by genetic algorithm (GA) feature selection

using Bayesian-regularized ANNs (BRANNs) as

predictors. The model was carried out by a neural

network ensemble approach which provides reliable

statistics. In addition, the capacity of the selected

variables for differencing the data was evaluated by

means of the unsupervised training of Kohonen Self-

Organizing Maps (SOMs).

Materials and methods

Dataset and molecular descriptors

AChE inhibitory activities [log(105/IC50)] of 136

tacrine analogues were taken from the literature [3–

11]. The chemical structures and experimental

activities are shown in Table I. IC50 values represent

the micromolar concentration that inhibits 50% of

AChE activity. For inactive compounds the threshold

value of log(105/IC50) ¼ 3 (IC50 ¼ 100mM) was

assigned. Since the whole dataset was extracted from

reports of several groups, there are some differences

between the AChE sources for pharmacological

assays. In order to evaluate the outcomes of these

differences, we analyzed the correlation between

inhibitory activities using bovine and human AChEs

for 17 compounds reported by Camps et al. [7,8].

Table II. shows that bovine log(105/IC50) and human

log(105/IC50) values correlates for these compounds

(R2 . 0.8), which was improved when one unfitted

compound was extracted. In the equation that

describes this relationship, the slope tends to 1 and

the intercept tends to zero. Furthermore, the equation

fixing the intercept also adjusts well this relationship.

According to this analysis, we consider that the

differences between AChE sources do not cause a high

error to our work.

Prior to molecular descriptor calculations, 3D

structures of the studied compounds were geome-

trically optimized using the semiempirical quantum-

chemical method PM3 [19] implemented in the

MOPAC 6.0 [20] computer software. The 3D

descriptors from the Dragon software [21] were

calculated for each compound: aromaticity indices

[22,23], Randic molecular profiles [24], geometrical

descriptors [25], RDF (radial distribution function)

descriptors [26], 3D-MoRSE (molecule represen-

tation of structures based on electron diffraction)

descriptors [27], WHIM (weighted holistic invariant

molecular) descriptors [28] and GETAWAY (GEo-

metry, Topology and Atom-Weight AssemblY)

descriptors [29]. In all, 721 descriptors were

calculated. Descriptors that stayed constant or almost

constant were eliminated, and pairs of variables with a

correlation coefficient greater than 0.95 were classi-

fied as intercorrelated, and only one of these was

included in the model. Finally, 271 descriptors were

obtained.

Artificial neural network regression procedure

Only a subset of the available pool of 271 descriptors is

statistically significant in terms of correlation with the

modeled AChE inhibitory activity. Our general

procedure is described in Figure 2.

Bayesian-Regularized Genetic Neural Network

(BRGNN) is a framework that combines BRANNs

with GA feature selection [30]. Our BRGNN

approach is a version of the So and Karplus GA

feature selection method [31] incorporating Bayesian

regularization.

Bayesian networks are optimal devices for solving

learning problems. They diminish the inherent

complexity of ANNs, being governed by Occam’s

Razor, when complex models are automatically self-

penalizing under Bayes’s rule. The Bayesian approach

to ANN modeling considers all possible values of

network parameters weighted by the probability of

each set of weights. The BRANN method was

designed by Mackay [32,33] for overcoming the

deficiencies of ANNs. Only a brief summary will be

provided here. The Bayesian approach yields a

posterior distribution of network parameters

P(wjD,H) from a prior probability distribution

P(wjH) according to updates provided by the training

set D using the BRANN model H. Predictions are

expressed in terms of expectations with respect to this

Figure 1. Structure of the tacrine analogues from modification of

tacrine.
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posterior distribution. Bayesian methods can simul-

taneously optimize the regularization constants in

ANNs, a process that is very laborious using cross

validation. Instead of trying to find the global

minimum, the Bayesian approach finds the (locally)

most probable parameters.

Bayesian approach produces predictors that are

robust and well matched to the data. These properties

become BRANNs in accurate predictors for QSAR

analysis [34,35]. They give models which are relatively

independent of ANN architecture, above a minimum

architecture, since the Bayesian regularization method

estimates the number of effective parameters. The

concerns about overfitting and overtraining are also

eliminated by this method so that the production of a

definitive and reproducible model is attained. The

joining of BRANN and GA feature selection (BRGNN)

increases the possibilities of BRANNs for modeling as

we indicated in previous works [16,17,30]. This method

is relatively fast and considers the whole data set in the

Table I. Experimental and predicted AChE inhibitory activities (log(105/IC50)) of tacrine analoguesa.

log(105/IC50)c

comp exp training test

1 (tacrine) 5.60 5.40 5.33

log(105/IC50)c

comp R R1 R2 R3 R4 R5 exp training test

2 H H H H H H 5.17 4.63 4.55

3 H NO2 H H H H ,3.00 3.60 3.71

4 H NH2 H H H H 4.23 4.41 4.41

5 H H NO2 H H H 3.17 4.63 5.02

6 H H NH2 H H H 3.54 4.28 4.40

7 H H Cl H H H 4.19 4.78 4.90

8 H H F H H H 4.92 4.54 4.48

9 H H H OMe H H 4.80 4.69 4.16

10 H H H H OMe H 4.19 3.72 3.42

11 H H H H H OMe 4.37 4.06 3.94

12 H H H Me H H 4.41 4.53 4.52

13 H H H H H Me 4.34 4.37 4.42

14 H H H H F H 5.37 4.51 4.34

15 H H H H Cl H 4.27 4.16 4.09

16 Bn H H H H H 4.15 4.31 4.33

17 Me H H H H H 4.89 4.90 4.96

18 n-C7H15 H H H H H 4.37 4.72 4.83

Neural network modeling of AChE inhibition by tacrine analogues 649



log(105/IC50)c

comp R R1 R2 exp training test

19 H Me H 4.09 5.07 5.23

20 H H Me 6.00 5.19 4.92

21 H Cl H 5.26 5.31 5.34

22 H H Cl 7.00 6.59 6.44

23 H NO2 H 4.52 5.04 5.22

24 H H NO2 6.55 5.43 5.21

25 H H OMe 5.46 5.16 5.07

26 H NH2 H 4.42 5.38 5.54

27 H H F 6.06 5.60 5.56

28 H Cl Cl 5.33 5.76 6.12

29 H OMe OMe 4.28 4.36 4.42

30 Bn Me H 4.43 4.39 4.39

31 Bn H Me 5.12 4.61 4.54

32 Bn H Cl 5.77 4.68 4.54

33 Bn NO2 H 4.80 4.57 4.51

34 Bn H NO2 4.32 4.64 4.73

35 n-C7H15 Me H 5.41 5.63 5.68

36 n-C7H15 H Me 5.89 5.55 5.51

37 n-C7H15 H Cl 6.89 6.51 6.35

38 n-C7H15 H NO2 5.54 5.82 5.87

39 n-C7H15 H OMe 5.34 5.67 5.80

40 n-C7H15 H F 6.35 6.09 6.02

41 H H Br 6.18 5.83 5.72

log(105/IC50)c

compb X(C(Xanti)Xsyn) R R1 R2 R3 exp training test

42 CH2 H H H H 4.31 5.04 5.11

43 C(Me)OMe Me H H H 4.87 5.05 5.13

44 C(OMe)Me Me H H H 4.17 4.53 4.62

45 CO Me H H H 4.68 5.56 5.71

46 (E)ZC

(vCHMe)

Me H H H 4.94 5.69 6.17

47 (Z)ZC

(vCHMe)

Me H H H 5.49 5.30 5.29

48 o-phenylene Me H H H 4.68 4.83 4.91

49 CH2 n-Pr H H H 5.37 5.84 5.95

50 CH2 i-Pr H H H 5.99 5.73 5.53

51 CH2 CH2CHvCH2 H H H 5.82 6.36 6.48

52 CH2 n-Bu H H H 5.55 5.93 5.97

53 CH2 t-Bu H H H 5.57 5.61 5.46

54 CH2 Ph H H H 5.90 5.08 4.80

55 CH2 Me H H H 6.19 5.80 5.77
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56 CH2 Me H H Me 6.91 6.14 5.93

57 CH2 Me F H H 6.50 6.49 6.52

58 CH2 Me H H F 7.07 6.39 6.25

59 CH2 Me F H F 7.61 6.94 6.78

60 CH2 Me H H Cl 7.37 7.13 7.10

61 CH2 Et H H H 6.41 6.05 6.02

62 CH2 Et Me H H 6.53 6.27 6.07

63 CH2 Et H H Me 6.92 6.55 6.43

64 CH2 Et Me H Me 7.44 7.30 7.30

65 CH2 Et F H H 6.33 6.52 6.59

66 CH2 Et H H F 7.13 6.76 6.68

67 CH2 Et F H F 7.58 7.18 7.07

68 CH2 Et Cl H H 6.79 7.17 7.34

69 CH2 Et H Cl H 5.59 6.58 6.88

70 CH2 Et H H Cl 7.56 7.33 7.27

71 CH2 Et Cl H Cl 6.40 6.90 8.00

log(105/IC50)c

compb R exp training test

72 Me 5.29 5.40 5.39

73 Et 5.78 5.28 5.22

log(105/IC50)c

compb X(C(Ranti)Rsyn) R(Rexo,Rendo) exp training test

74 CH2 H,H 3.38 4.46 4.65

75 CH2 OH,H 4.79 4.45 4.40

76 o-phenylene H,H 4.59 4.30 4.21

77 CH2 H,OH 4.37 4.47 4.49

78 o-phenylene H,OH 3.82 4.22 4.61

X

N
79 80-81

R
NH2

X

N

R
NH2

log(105/IC50)c

compb X(C(Ranti)Rsyn) R(Rexo,Rendo) exp training test

79 CH2 Me 4.25 5.02 6.02

80 o-phenylene O 4.53 3.70 3.39

81 CH2 H,OH 3.87 3.62 3.66
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log(105/IC50)c

compb R R1 n exp training test

82 H Et 1 4.81 4.50 4.45

83 4-Me Et 1 4.74 4.32 4.29

84 4-Cl Et 1 4.71 4.78 4.96

85 4-CN Et 1 4.46 4.58 4.58

86 4-OMe Et 1 5.06 4.23 4.16

87 3-NO2 Et 1 4.72 4.58 4.54

88 H Et 0 4.41 4.22 4.26

89 3-OMe Et 0 ,3.00 3.80 3.98

90 3-OMe Et 1 3.52 4.07 4.12

91 3-OMe Et 2 3.89 3.83 3.82

92 2-OMe Et 0 3.62 3.81 3.90

93 2-OMe Et 1 4.11 4.01 4.00

94 2-OMe Et 2 3.68 4.05 4.11

95 3,4-diOMe Et 0 3.57 3.91 3.56

96 3,4-diOMe Et 1 4.34 4.13 4.10

97 3,4-diOMe Et 2 3.48 3.85 3.89

98 H i-Pr 1 3.52 3.87 3.91

log(105/IC50)c

comp R R1 n exp training test

99 H Et 0 3.92 4.20 4.27

100 H Et 1 5.09 4.56 4.49

101 H Et 2 3.68 4.46 4.81

102 4-OMe Et 0 3.86 3.87 3.91

103 4-OMe Et 1 4.05 4.20 4.24

104 4-OMe Et 2 4.87 3.99 3.94

105 4-OMe Et 1 4.92 4.75 4.64

106 3,4-diOMe Et 1 4.89 4.77 4.74

107 4-F Et 1 5.15 4.69 4.64

108 4-Cl Et 1 4.89 4.67 4.63

109 3-NO2 Et 1 5.03 4.97 4.96

110 4-Me Et 2 3.89 4.20 4.30

111 3-OMe Et 2 3.52 4.40 4.51

112 2-OMe Et 2 3.66 3.96 3.97
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training process. For other hybrids of ANN and GA the

use of the MSE as fitness function could lead to

undesirable well fitted but poor generalized networks as

algorithm solutions. In this connection, BRGNN avoids

such results by two aspects: 1) keeping network

architectures as simple as possible inside the GA

framework and 2) implementing Bayesian regulation

in the network training function.

Fully connected, three-layer BRANNs with back-

propagation training were implemented in the

MATLAB environment [36]. In these nets, the

transfer functions of input and output layers were

113 3,4-diOMe Et 2 4.19 4.00 3.95

114 4-F Et 2 4.27 4.11 4.08

115 4-Cl Et 2 3.72 4.18 4.24

116 3-NO2 Et 2 3.85 4.01 4.05

117 H Et 3 3.77 3.70 3.66

118 4-OMe Et 3 3.77 3.48 3.39

119 H i-Pr 1 4.92 4.63 4.59

log(105/IC50)c

comp X R n exp training test

120 O H 1 5.36 4.86 4.63

121 O Me 1 5.42 5.24 5.23

122 O OMe 1 5.34 5.43 5.51

123 O H 2 5.50 5.27 5.19

124 S H 1 ,3.00 2.75 2.14

125 S H 2 ,3.00 3.67 4.59

log(105/IC50)c

comp R N exp training test

126 Cl 0 ,3.00 3.12 3.15

127 OMe 0 ,3.00 3.12 3.18

128 Me 0 ,3.00 3.21 3.33

129 Cl 1 ,3.00 3.14 3.27

130 NO2 1 ,3.00 3.03 2.98

131 OMe 1 ,3.00 3.11 3.08

132 Me 1 ,3.00 2.68 2.58

133 Cl 2 ,3.00 2.90 2.82

134 NO2 2 ,3.00 2.99 2.98

135 OMe 2 ,3.00 2.99 3.02

136 Me 2 ,3.00 2.99 2.97

a Compounds 2–18 are from Ref. 3; 19–41 are from Ref. 4; 42–48, 55, 61 and 74–81 are from Ref. 5; 49–54, 56–58 and 62–63 are from Ref.

6; 59–60 and 64–71 are from Ref. 7; 72–73 are from Ref. 8; 82–88 and 99–104 are from Ref. 9; 120–125 are from Ref. 10 and 89–98, 105–

119 and 126–136 are from Ref. 11. b racemic mixtures. c IC50: micromolar concentration that inhibits 50% of AchE activity.
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linear and the hidden layer had neurons with a

hyperbolic tangent transfer function. Inputs and

targets took the values from independent variables

selected by the GA and log(105/IC50) values,

respectively; both were normalized prior to network

training. BRANN training was carried out according

to the Levenberg-Marquardt optimization [37]. The

initial value for m was 0.005 with decrease and

increase factors of 0.1 and 10, respectively. The

training was stopped when m became larger than 1010.

The GA implemented in this paper keeps the same

characteristics of the previously reported in earlier work

[30]. Initially, a set of 50 chromosomes were randomly

generated. The population fitness was then calculated

and the memberswere rankorderedaccording to fitness.

The 2 best scoring models were automatically retained

as members for the next round of evolution. More

progeny models were then created for the next

generation by preferentially mating parent models with

higher scores. Crossover operator and single-point

mutations were used in the evolution process until the

best MSE scoring model remains constant for at least

10 generations. Our GA was programmed within the

MATLAB environment using the genetic algorithm and

neural networks toolboxes [36]. The predictors are

BRANNs with a simple architecture (two or three

neurons ina solehidden layer). We tried the MSE of data

fitting for BRANN models, as the case may be, as the

individual fitness function. The best models according

to R value (R. 0.8) were selected, and they were tested

in cross-validation experiments for avoiding chance

correlations (Figure 2).

The predictive power of the model was measured by

an external validation process that consists of

predicting the activity of unknown compounds

forming the test set. To avoid the influence of casual

external sets, neural network ensembles (NNEs) were

employed; building all members by the random

partition of the whole data set into training (80%)

and test sets (20%) following the Agrafiotis et al.

proposition [38]. As a result, averaging external

predictions were obtained (Figure 2). The quality

and reliability was settled by examining the correlation

coefficient R and the MSE of the test set fitting.

Assembling multiple versions of a predictor pro-

vides ‘smoother’ more stable predictions [39].

Ensemble averaging minimizes uncertainty and

produces more stable and accurate predictors.

Recently, our group demonstrated the advantages of

the ensemble solution for QSAR validation [40]. The

robustness of this method lies on the adequacy of

many external predictions; therefore, it can replace the

traditional validation processes.

Kohonen self-organizing maps

The Kohonen SOMs [41] are ANNs related to classic

clustering algorithms, in that they generate groupings

of data points taken to be described by a single vector

of typical values. However, the SOMs are distinct

from standard clustering methods in that they do not

operate with separate clusters: rather, they allocate

data points to groups which are related [42].

Kohonen SOMs are networks of spatially related

nodes each of which represents a ‘prototype’ of a

particular region of data (input) space. Each node

Figure 2. Flowchart of the modeling procedure.

Table II. Correlation between log(105/IC50) using bovine AChE

and log(105/IC50) using human AChEa.

Features of the correlation. n slope intercept R 2

Adjusting intercept 17 1.108 20.497 0.814

Fixing intercept 17 1.034 0.000 0.810

Adjusting intercept 16b 1.145 20.818 0.934

Fixing intercept 16b 1.023 0.000 0.924

a Equation: bovine-log(105/IC50) ¼ slope £ human-log(105/IC50) þ

intercept. b An unfitted compound was eliminated.
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comprises a set of weights corresponding to the

dimensions of the data. Their characteristic feature is

their ability to map nonlinear relations in multi-

dimensional data sets into easily visualizable two-

dimensional grids of neurons displaying the topology

of a data set. Essentially, SOMs permit the perception

of similarities in objects.

To settle structural similarities among the modeled

AChE inhibitors, a Kohonen SOM was built. The 3D

descriptors selected by GA were used for unsupervised

training of 13 £ 13 neuron maps. SOMs were

implemented in the MATLAB environment [36].

Neurons were initially located in a grid topology. The

ordering phase was developed in 1000 steps with a 0.9

learning rate until a tuning neighborhood distance

(1.0) was achieved. The tuning-phase learning rate

was 0.02. Training was performed for a period of 2000

epochs in an unsupervised manner.

Results and discussion

Molecular descriptors

BRGNN methodology was applied for evaluating

nonlinear relationships between the inhibitory activity

and molecular descriptors. We found a seven

descriptor space able to explain the AChE inhibition;

the descriptors that constitute this space are shown in

Table III. The selected space includes the geometrical

descriptor SPAM, the RDF descriptor RDF075m, four

3D-MoRSE descriptors and the GETAWAY descrip-

tor HATS6u. It is noteworthy that there is no

significant intercorrelation between these descriptors,

as is seen in Table IV.

Geometrical descriptor SPAM [43] describes the

3D structures of tacrine analogues based on the

Volkenstein approach for estimation of the statistical

properties of polymer chains considering short-range

interactions.

RDF descriptors [26] are calculated from the radial

distribution function of an ensemble of N atoms that

can be interpreted as the probability distribution of

finding an atom in a spherical volume of radius r.

Equation (1) represents the radial distribution func-

tion code:

gðrÞ ¼ f
XN21

i

XN

j.1

AiAje
2Bðr2rij Þ

2

ð1Þ

where f is a scaling factor, N is the number of atoms, Ai

and Aj are atomic properties of atoms i and j, rij

represents the interatomic distances and B is an

smoothing parameter, that defines the probability

distribution of the individual distances. g(r) was

calculated at a number of discrete points with defined

intervals. Different atomic properties Ai were used,

such as atomic mass, atomic van der Waals volumes,

atomic Sanderson electronegativities, and atomic

polarizabilities. The possibility for choosing an

appropriate atomic property gives great flexibility to

the RDF space for adapting it to the problem under

investigation. RDF075m takes into account the atoms

around 7.5Å in the atomic mass weighting scheme.

3D-MoRSE [27] code considers the molecular

information derived from an equation used in electron

diffraction studies. Electron diffraction does not

directly yield atomic coordinates but provides diffrac-

tion patterns from which the atomic coordinates are

derived by mathematical transformations. 3D-

MoRSE code is applied by Equation (2):

IðsÞ ¼
XN

i¼2

Xi21

j¼1

AiAj

sin srij

srij

ð2Þ

In this equation, Ai and Aj are atomic properties of

atoms i and j, rij represents the interatomic distances,

and s measures the scattering angle. The value of s

(0,. . ., 31.0Å21) is considered only at discrete

positions within a certain range. Values of I(s) are

defined at 32 evenly distributed values of s in the range

of 0–31.0Å21. These 32 values constitute the 3D-

MoRSE code of the three-dimensional structure of a

molecule. Like in the RDF approach, atomic proper-

ties Ai were used (atomic masses, atomic van der

Waals volumes, atomic Sanderson electronegativities

and atomic polarizabilities). The possibility for

choosing an appropriate atomic property gives great

flexibility to the 3D-MoRSE code for adapting it to

the problem under investigation. In this work, 3D-

MoRSE-selected descriptors were the unweighted

Mor32u, weighted by van der Waals volumes Mor03v

and Mor17v and weighted by atomic polarizabilities

Mor32p. This code represents a restricted 3D space

which captures relevant molecular information, which

is related to the modeled AChE inhibitory activity.

GETAWAY descriptors [29] are based on the

molecular influence matrix (MIM). They match the

3D molecular geometry provided by the MIM and

Table III. Symbols of the 3D-descriptors selected by Genetic

Algorithm and their definitions.

Variable Definition

SPAM Average span R.

RDF075m Radial Distribution Function at 7.5Å weighted

by atomic masses.

Mor32u 3D MoRSE signal 32 unweighted.

Mor03v 3D MoRSE signal 3 weighted by atomic

van der Waals volumes.

Mor17v 3D MoRSE signal 17 weighted by atomic

van der Waals volumes.

Mor32p 3D MoRSE signal 32 weighted by atomic

polarizabilities.

HATS6u Leverage-weighted autocorrelation of lag 6

unweighted.
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atom relatedness by molecular topology, with chemi-

cal information. The diagonal elements hii of the

MIM, called leverages, encode atomic information

and represent the ‘‘influence’’ of each molecule atom

in determining the whole shape of the molecule; in

fact, mantle atoms always have higher hii values than

atoms near the molecule center. Each off-diagonal

element hij represents the degree of accessibility of the

jth atom to interactions with the ith atom. Specifically,

HATS6u comes from H-GETAWAY descriptors based

on Moreau-Brotto autocorrelation descriptors [44].

In such descriptors, geometrical information provided

by leverage values is combined with atomic weight-

ings, accounting for specific physicochemical proper-

ties of molecule atoms. HATS indices consider

the MIM diagonal elements. Like in the Moreau-

Broto autocorrelations, HATSk(w) descriptors are

defined as:

HATSkðwÞ ¼
XA21

i¼1

X
j.1

ðwi�hiiÞ�ðwj�hjjÞ�dðk; dijÞ ð3Þ

Where k (1, 2, . . ., d) is the path length (lag) in the

molecular graph, dij is the topological distance

between atoms i and j, while wi and wj are the

A-dimensional property vector of the atoms i and j.

The function d(k; dij ) is a Dirac-delta function

defined as

d ¼ ðk; dijÞ ¼
1 if dij ¼ k

0 if dij – k

( )
ð4Þ

The information contained in RDF, 3D-MoRSE

and GETAWAY selected descriptors is related to

distributions of relevant atomic properties across the

entire molecules. In this sense, the elucidation of the

molecular key features of the modeled data set from

our proposed space is a difficult task. However, it can

be perceived according to the nonlinear structural

information here obtained, that an adequate distri-

bution of atomic masses, van der Waals atomic

volumes and polarizabilities has a great influence on

the AChE inhibitory activities of the tacrine analogues.

It suggests that molecular size, shape and atomic

constitution, instead of electronic properties, play an

important role in the tacrine analogues’ activity. These

facts agree well with reports where the access of the

inhibitors to the AChE buried active site are strongly

limited by the presence of a long and narrow gorge or

channel leading from the surface of the enzyme [45];

this aspect imposes shape and size-related constraints

for AChE inhibitors. A striking feature of this gorge is

that it is lined by 14 aromatic residues which make up

approximately 40% of its surface and allow the AChE

active site to be qualified as hydrophobic.

In order to gain a deeper inside on the relative

effects of each 3D descriptor in our model, a recently

reported weight-based input ranking scheme was

carried out. The black-box nature of three layers

ANNs has been “deciphered” in a recent report by

Guha et al. [46]. Their method allows an under-

standing of how an input descriptor is correlated to the

predicted output by the network and consists of two

parts. First, the nonlinear transform for a given

neuron is linearized. Afterward, the magnitude in

which a given neuron affects the downstream output is

determined. Next, a ranking scheme for neurons in

the hidden layer is developed. The ranking scheme is

carried out by determining the Square Contribution

Values (SCV) for each hidden neuron (see Reference

46 for details). This method for ANN model

interpretation is similar in manner to the partial least

squares interpretation method for linear models

described by Stanton [47].

Results of the ANN deciphering study appear in

Table V. The reported effective weight matrix for our

model shows that the third hidden neuron has the

major contribution to the model with a SCV value 4-

fold higher in comparison to the first hidden neuron.

On this neuron, SPAM and Mor03v descriptors have

the highest impacts equal to 22.774 and 2.676,

respectively. From this analysis we can also derive the

approximate effect of the selected descriptors. The sign

of the weights indicates the trend of the output value.

According to the sign of the effective weights in each

hidden neuron, neither descriptor shows a completely

positive or negative trend which suggests complex

nonlinear effects. The most relevant descriptors SPAM

and Mor03v, which have opposed effects in the third

hidden neuron (negative and positive respectively),

change their effects in other neurons.

Table IV. Correlation matrix of the descriptors selected by Genetic Algorithm.

SPAM RDF075m Mor32u Mor03v Mor17v Mor32p HATS6u

SPAM 1

RDF075m 0.368 1

Mor32u 0.098 0.023 1

Mor03v 0.054 0.280 0.044 1

Mor17v 0.553 0.432 0.093 0.232 1

Mor32p 0.000 0.004 0.582 0.106 0.010 1

HATS6u 0.080 0.224 0.203 0.000 0.252 0.196 1
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Ensemble averaging

The above selected descriptors constitute the vectorial

space that describes the modeled activity in a better

way. For validating our vectorial space we evaluated the

correlation coefficient and standard deviation (Q 2 and

SCV values) in LOO cross-validation process. The

network hidden layer’s architecture was explored, but

no relevant differences were found due to the Bayesian-

regularization. Q 2 reached the value of 0.745 and

SCV ¼ 0.611 when the 7-3-1 architecture was

employed. As can be seen, the correlation and

predictive power behaviours were satisfactory so that

the ability of the GA-selected descriptors to act as

relevant information for the modeled activity is also

confirmed in this case.

In order to obtain a more reliable model, we

evaluated the predictive power by creating several

training sets and predicting activities of unknown

compounds. Instead of the selection of a sole test set,

we generated multiple ones by means of the NNE

approach. Then, we averaged external predictions.

Members of NNEs were randomly generated by

dividing the whole data set into 109 inhibitors for the

training sets (80%) and 27 inhibitors for the test sets

(20%), keeping the previous BRANN architecture.

Averaged multiple correlation coefficients (averaged

R) of the test sets for 20 instances of NNEs with 1, 5,

10, 20 and 40 predictors were examined (Figure 3). All

averaged R values stem from adding up 1, 5, 10, 20 and

40 external set R values containing 27 inhibitors each.

NNEs containing one member are cases when single

training and test sets were selected without integrating

them to any ensemble. It is obvious that random

partitioning is highly unsatisfactory. Diverse partitions

generate a broad scope of external sets, and some are far

better predicted than others. Therefore, even when it is

broadly employed, to assess the predictive power by

means of a single external data set, random selection

yields a rather fortuitous result. It is noteworthy that

more reliable information can be acquired when the

number of members in the ensemble is increased.

Ensembles containing 40 members are similarly

predictive according to averaged test set R values

around 0.841. The accumulation of members leads to

an averaged model that weights the contribution of each

predictor; in this form, deceptive conclusions are

suppressed. Since our test set consists of 20% of the

whole data set, the probability that an inhibitor will be

selected as part of a test set is low. When a new partition

is carried out, the new test set can contain elements from

the original test set and new elements. The assemblage

of successive members allows storage of predictions for

each compound. Whereas the higher is the number of

members, most replies of predictions can be collected;

therefore, we can establish a test set prediction for the

ensemble by averaging them, which includes all

compounds when the number of members is sufficiently

large. The NNE provides a reliable measure of training

and test set R values. According to this, we report

training set R ¼ 0.921 and test set R ¼ 0.851 when 40

members are assembled. The plots of training and

external predictions versus experimental activities

employing 40-member NNEs are shown in Figure 4.

Since the ensemble approach leads to stable ANN

models, it becomes easeful to inspect the influence of

some aspects that may affect the quality of our

modeling procedure. The number of hidden nodes

defines the number of parameters, which must be

carefully adjusted in traditional ANNs. This is less

critical in BRANNs, however it is useful to study the

statistical behaviour of our ensemble when the

number of hidden nodes are increased. Figure 5

shows the consequence of varying the number of

hidden nodes in test set R value for 40-member NNE.

We conclude that there is not an appreciable effect due

to the Bayesian regularization. Otherwise, we explored

other partitions instead of 20% for generating test sets.

This analysis allows evaluating which proportion of

the dataset is foreseeable by the rest, which means the

Table V. Effective weight matrix for the optimum model for the

AChE inhibitory activity of the studied tacrine analoguesa. Most

relevant descriptors appear in bold letter.

Hidden neurons

Network inputs 3 1 2

SPAM 22.774 1.119 2.850

RDF075m 0.846 20.037 0.021

Mor32u 20.071 0.549 21.384

Mor03v 2.676 20.681 21.412

Mor17v 20.801 0.371 20.061

Mor32p 20.652 20.170 2.472

HATS6u 0.924 20.522 0.297

SCV 0.777 0.204 0.019

a The columns are ordered by the SCVs for the hidden neurons,

shown in the last row

Figure 3. Multiple correlation coefficients (R) of 20 replies of

neural network ensembles using 1, 5, 10, 20 and 40 members for test

sets.
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redundancy in the whole dataset. Figure 6 shows the

consequence of varying dataset partition in test set R

value for 40-member NNE. The statistics of test set

fitting declines when the test set elements are above

50% which indicates that one half of the data contains

the information of all the modeled tacrine analogues.

Kohonen self-organizing neural network analysis

In order to achieve data differentiation, a Kohonen

SOM with 13 £ 13 neurons was mapped with GA

selected descriptors as input vectors. In a self-organizing

neuralnetwork, if two input datavectors are similar, they

will be mapped into the same neuron or into very close

neurons in the two-dimensional map. Therefore, either

group in the map can be interpreted as a set of analogues

defined by the vectorial space.

Figure 7 depicts a Kohonen SOM for the 136 AChE

modeled inhibitors. It is clearly seen that compounds are

adequately distributed across the entire map: 77 out of a

total of 169 neurons were occupied. As observed,

compounds with a similar range of activities were

grouped into neighboring areas. It is noteworthy that

there is a kind of gradient from the less-active

compounds across the upper zone to the most-active

compounds at the lower-right zone. As a consequence,

this map can be used to carry out qualitative predictions.

The position in the map would be able to assign an

approximate range of activity for unknown compounds.

The analysis of test set predictions of the 136 modeled

AChE inhibitors reported in Table I, suggests that

compounds 5, 24, 32, 46, 69, 71, 74, 79 and 125 can be

considered as test set outliers (residuals. 2 SCV) in our

vectorial space. The reason for the wrong prediction of

these compounds is related to inaccurate associations

with similar molecules containing unequal activity.

Some evidence can be derived from a closer inspection

of the Kohonen SOM of Figure7.Compounds5,46,69,

71, 74, 79 and 125 were predicted as more active than

they really are. This fact can be attributed to the high

molecular similarity that these compounds share with

more-active compounds, thus, avoiding a correct

discrimination; it is hinted from the position they

occupy in the map. Compounds with a range of

log(106/IC50) values between 3 and 3.99 are in the

upper-left, but compounds 5 and 74 are out of this zone.

Meanwhile, the inactive compound 125 is located far

from the other inactive ones. Besides, compounds 46,

69, 71 and 79 were located in the lower-right zone,

related to the most-active inhibitors. On the other hand,

compounds 24 and 32 were related to lesser-active

inhibitors. This can be inferred by their surroundings in

the SOMs: compound 32 (log(106/IC50) ¼ 5.77) was

located in the upper-left zone where the majority of

compounds have log(106/IC50) values between 3 and

4.99, while compound 24 is located in a complex zone

where the majority of compounds present an inferior

AChE inhibitory activity.

Figure 4. Plot of predicted versus experimental log(105/IC50)

values for AChE inhibition by tacrine analogues using 40-member

NNEs. (X) training predictions; (W) external predictions.

Figure 5. Plot of test set R values vs. number of hidden nodes in

neural networks for 40-member NNE.

Figure 6. Plot of test set R values vs. % of compounds in test set in

neural networks for 40-member NNE.
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Figure 7. Kohonen SOM for the data set using descriptors selected by genetic algorithm. Maps at bottom represent the ranges of AChE

activities (log105/IC50).
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Despite the help that an analysis of the SOMs may

offer a simple comparison of the structures of the

outliers with the associated compounds in the data set

does not reveal why these compounds are poorly

predicted. As a result of the complexity of the modeled

activity and the structural diversity, any obvious

explanation is not feasible.

Comparison with previous computational models

Depicting the interaction of tacrine analogues with the

AChE active site is not trivial. The flexibility of the

ligands in conjunction with the rather large volume

available to them inside the gorge allow incredibly high

numbers of binding modes. There is experimental

evidence that tacrine is able to bind also at a peripheral

site [48]. This knowledge originated from dimers of

tacrine which can be more potent and selective than

tacrine since their tacrine units simultaneous bind to

the catalytic and peripheral sites of AChE [49]. Since

some of the tacrine analogues can bind at the catalytic

site, while others can bind at the peripheral site, a

broad QSAR model would represent an all-embracing

relationship for subsets of compounds acting at

different or both sites.

In general, previous SAR and QSAR studies have

identified that hydrophobicity and the presence of

ionizable nitrogen are essential features for the

inhibitors to interact with AChE [13]. In addition,

docking and molecular dynamics approaches confirm

that the 3D dimensional positioning of the inhibitor

in the active site of the enzyme, i.e. the mode of

interaction, varies among different chemical classes.

Some previous QSAR models for AChE inhibition

modeling include tacrine analogues. Recanatini et al.

carried out a comparative QSAR analysis aimed at

individuating the physico-chemical properties govern-

ing the inhibitory activity of 13 series of compounds

including benzylamines, physostigmine analogues and

2 series of tacrines [50]. The QSARs for tacrine series

were bilinear models in steric effects. However, the

collinearity between steric and hydrophobic par-

ameters did not allow the authors to draw any final

conclusion about this model. In other work, Recana-

tini et al. derived the Hansch approach and CoMFA

analysis for a series of 23 tacrine analogues substituted

in positions-6 and -7 of the acridine nucleus and

bearing selected groups on the 9-amino function [4].

Both methods provided two separate models that

show a satisfactory consistency, pointing out the

negative steric effect of substituents in position-7 and

the relative steric freedom of position-6 as main SAR

aspects of the tetrahydroacridine-based AChE inhibi-

tors. The report of Martı́n-Santamarı́a et al. includes

21 tacrines, 7 huprines, and 7 dihydroquinazolines in

a QSAR modeling study [51]. These authors

identified the key residues that modulate the

inhibitory potencies of these classes of AChE

inhibitors using the comparative binding energy

(COMBINE) methodology. These authors report an

interpretable COMBINE model that was able to fit

and predict the activities of the three series of

inhibitors reasonably well (Q 2 ¼ 0.76). They also

found a more robust predictive model when the same

chemometric analysis was applied to the huprines

set alone (Q 2 ¼ 0.81), but the method was unable to

provide predictive models for the other two families

when they were treated separately from the rest.

QSAR studies may be classified as interpretive and

predictive depending on the purpose of the study [52].

Interpretive studies often use a relatively small number

of compounds and molecular descriptors that can be

easily related to structural characteristics. They

attempt to illustrate how the descriptors found to be

important in a model relate to the interactions

between the ligand and target. Predictive QSAR

studies usually use a large and diverse dataset and

computationally efficient descriptors. In distinction of

the above-mentioned earlier interpretive studies, our

QSAR model is predictive, since it encompasses a

diverse set of tacrine analogues, therefore, our model

can be useful like a predictive tool more than for

mechanistic evaluation of this information for mol-

ecular design. In consequence, we employed molecu-

lar descriptors chosen for their computational

efficiency and information-rich character. The com-

bination of BRANNs and GA leads to a highly

satisfactory model taking into account its predictive

ability.

Conclusions

In conclusion, a large and diverse data of tacrine

analogues has been assembled for which AChE

inhibitory activity has been assessed. A nonlinear

QSAR model was developed with descriptors gener-

ated from 3D molecular structure using BRGNN

methodology. The model successfully explains the

modeled structure-activity relationship, based on both

statistical significance and predictive ability. In

analogy with previous studies, this work has generated

a system capable of rapid virtual screening of tacrine-

related compounds for AChE inhibition. Unlike

previous studies, this model is derived from an

ample and varied set of tacrine analogues which

integrates the current trends of tacrine modification.

In this sense, our model provides more robust

extrapolation in chemical space compared to models

created in previous reports.
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